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ABSTRACT

Social bot detection is of paramount importance to the resilience
and security of online social platforms. The state-of-the-art detec-
tion models are siloed and have largely overlooked a variety of data
characteristics from multiple cross-lingual platforms. Meanwhile,
the heterogeneity of data distribution and model architecture make
it intricate to devise an efficient cross-platform and cross-model
detection framework. In this paper, we propose FedACK, a new
federated adversarial contrastive knowledge distillation framework
for social bot detection. We devise a GAN-based federated knowl-
edge distillation mechanism for efficiently transferring knowledge
of data distribution among clients. In particular, a global generator
is used to extract the knowledge of global data distribution and
distill it into each client’s local model. We leverage local discrimi-
nator to enable customized model design and use local generator
for data enhancement with hard-to-decide samples. Local training
is conducted as multi-stage adversarial and contrastive learning to
enable consistent feature spaces among clients and to constrain the
optimization direction of local models, reducing the divergences
between local and global models. Experiments demonstrate that
FedACK outperforms the state-of-the-art approaches in terms of
accuracy, communication efficiency, and feature space consistency.
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1 INTRODUCTION

Social bots imitate human behaviors on social networks such as
Twitter, Facebook, Instagram, etc. [43]. Millions of bots, typically
controlled by automated programs or platform APIs [1], attempt to
sneak into genuine users as a disguise to pursue malicious goals
such as actively engaging in election interference [11, 17], misin-
formation dissemination [8], and privacy attacks [37]. Bots are also
involved in spreading extreme ideologies [3, 18], posing threats
to online communities. Effective bot detection is necessitated by
the jeopardized user experience on social media platforms and the
induction of unfavorable social effects.

There is a new yet understudied problem in bot detection – a
society of bots tend to be exposed to multiple social platforms
and behave as collaborative cohorts. Existing bot detection solu-
tions largely rely on user property features extracted from meta-
data [9, 41], or features derived from textual data such as a tweet
post [15, 39], before adopting graph-based techniques to explore
neighborhood information [14, 42, 46]. While such models can
uncover camouflage behaviors, they are siloed and subject to the
amount, shape, and quality of platform-specific data. To this end,
Federated Learning (FL) has becomes the main driving force of
model training across heterogeneous platforms without disclosing
local private datasets. Some studies [32, 44, 45, 49] augmented FL
by Generative Adversarial Networks (GANs) and Knowledge Dis-
tillation (KD) in a data-free manner to safeguard privacy against
intrusions. However, they have the following limitations:

i) Restriction to homogeneous model architecture. As FL models as-
sume homogeneousmodel architecture on a per client basis – which
however no longer holds – participants are stringently required
to conform to the same model architecture managed by a central
server. It is therefore imperative to enable each individual platform
to customize heterogeneous models as per unique data character-
istics. ii) Inconsistent feature learning spaces. The state-of-the-art
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Federated KD approaches are largely based on image samples and
assume consistent feature space. However, the distinction between
global and local data distribution tends to result in non-negligible
model drift and inconsistent feature learning spaces, which will
in turn cause performance loss. It is highly desirable to align fea-
ture spaces among different clients to improve the global model
performance. iii) Sensitivity to content language. Textual data based
anomaly detection approaches to date are sensitive to the languages
that the model is built upon. Existing solutions for cross-lingual con-
tent detection in online social networks either substantially raise
computational costs [10, 13, 50] or require labor-intensive feature
engineering to identify cross-lingual invariant features [7, 12, 36].
Arguably, how to incorporate into a synergetic model a variety of
customized models with heterogeneous data in different languages
to enable consistent feature learning space is still under-explored.

This paper proposes FedACK, a novel bot detection framework
through Federated Adversarial learning Contrastive learning and
Knowledge distillation. FedACK envisions to enable personaliza-
tion of local models in a consistent feature space across different
languages (see Fig. 1). We present a new federated GAN-based
knowledge distillation architecture – a global generator is used to
extract the knowledge of global data distribution and to distill the
knowledge into each client’s local model. We elaborate two discrim-
inators – both globally shared and local – to enable customized
model design and use a local generator for data enhancement with
hard-to-decide samples. Specifically, the local training on each client
side is regarded as a multi-stage adversarial learning procedure to
efficiently transfer data distribution knowledge to each client and to
learn consistent feature spaces and decision boundaries. We further
exploit contrastive learning to constrain the optimization direc-
tion of local models and reduce the divergences between local and
global models. To replicate non-IID data distribution across multi-
platforms, we employ two real-world Twitter datasets, partitioned
by the Dirichlet distribution. Experiment shows that FedACK out-
performs the state-of-the-art approaches on accuracy and achieves
competitive communication efficiency and consistent feature space.
This work makes the following contributions.

• To the best of our knowledge, FedACK is the first social bot
detection solution based on federated knowledge distillation that
envisions cross-lingual and cross-model bot detection.
• contrast and adversarial learning mechanisms for enabling con-
sistent feature space for better knowledge transfer and repre-
sentation when tackling non-IID data and data scarcity among
clients.
• FedACK outperforms other FL-based approaches by up to 15.19%
accuracy improvement in high heterogeneity scenarios, and achieves
up to 4.5x convergence acceleration against the 2nd fastestmethod.

To enable replication and foster research, FedACK is publicly
available at: https://github.com/846468230/FedACK.

2 PRELIMINARIES

2.1 Background

Federated learning (FL). FL is a distributed learning paradigm
that allows clients to perform local training before aggregationwith-
out sharing clients’ private data [4, 22, 27, 28, 30]. While promising,
FL can have inferior performance particularly when training data
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Figure 1: Incorporating multiple social platforms with het-

erogeneous languages, context spaces and model architec-

tures

is not independent and identically distributed (Non-IID) on local
devices [25, 47], which could make the model deflected to a local
optimum [20]. Most of the existing works mainly fall into two
categories. The first is introducing additional data or using data
enhancement to address model drift issue caused by the non-IID
data. FedGAN [32] trains a GAN to tackle the non-IID data chal-
lenge in a communication efficient way but inevitably produces
bias. FedGen [49] and FedDTG [45] utilize generator to simulate
the global data distribution to improve performance. The second
category mainly focuses on local regularization. FedProx [25] adds
an optimization item to local training, and SCAFFOLD [20] uses
control variants to correct the client-drift in local updates while
guaranteeing a faster convergence rate. FedDyn [2] and MOON
[24] constrain the direction of local model updates by comparing
the similarity between model representations to align the local and
global optimization objectives. However, these approaches either
direct model aggregation to get the global model that causes non-
negligible performance deterioration [35] or neglect the impact of
data heterogeneity, which may lead to knowledge loss of local data
distribution during the model aggregation.
Federated knowledge distillation (KD). KD is first introduced
to use compact models to approximate the function learned by
larger models [5]. Knowledge is formally referred to as the softened
logits, and in a typical KD, a student model absorbs and mimics the
knowledge from teacher models [19]. KD is inherently beneficial
for FL since it requires less or no data to enable the model to un-
derstand the data distribution. FedDistill [33] jointly refines logits
of user-data obtained through model forward propagation and per-
forms global knowledge distillation to reduce the global model drift
problem. FedDF [26] proposes an ensemble distillation for model fu-
sion and trains the global model through averaged logits from local
models. FedGen [49] combines each local model’s average logits as
the teacher in KD to train a global generator. FedFTG [44] uses each
local model’s logit as the teacher to train a global generator and
distill knowledge by using the pseudo-data generated by the global
generator to fine tune the global model. However, none of them
focuses on enabling consistent feature space, which will lead to
ineffective knowledge dissemination. FL and KD have been largely
overlooked to date in social bot detection, which is investigated
in a siloed way [8]. FedACK can fill this gap through enhanced
adversarial learning with a shared discriminator and an exclusive
discriminator to support designated cross-model bot detection.
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Cross-lingual content detection in social networks. Publish-
ing fake or misleading contents through social bots on social net-
works in different languages has become the norm rather than the
exception. [7, 12] have explored the possibilities of cross-lingual
content detection by seeking cross-lingual invariant features. There
is also a huge body of research on cross-lingual text embedding
and model representation [10, 13, 29, 31, 50] for detecting hate
speeches, fake news or abnormal events. These works usually re-
quire huge efforts in finding cross-lingual invariants in the data,
and thus computational inefficiency. While InfoXLM [6] could be
applied in FedACK as a substitute for our cross-lingual module, it
may involve additional overhead given only a few mainstream lan-
guages in social platforms. FedACK implemented text embedding
by mapping the cross-lingual texts into the same context space.

2.2 Problem Scope

We consider federated social bot detection setting that includes a
central server and K clients holding private datasets {D1, . . . ,D𝐾 }.
These private datasets contain benign accounts and different gener-
ations of bots. Presumably, different model architectures or param-
eters exist on different clients. FedACK focus on meta and text data,
rather than multimodal data. Instead of collecting raw client data,
the server tackles heterogeneous data distribution across clients
and aggregates model parameters for the shared networks. The
objective is to minimize the overall error among all clients:

arg min
𝑤

L(𝑤) = 1
𝐾

𝐾∑︁
𝑘=1

1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1
L(𝑥𝑘𝑖 , 𝑦

𝑘
𝑖 ;𝑤), (1)

where L is the loss function that evaluates the prediction model𝑤
on the data sample (𝑥𝑘

𝑖
, 𝑦𝑘
𝑖
) of D𝑘 = {(𝑥𝑘

𝑖
, 𝑦𝑘
𝑖
)}|𝑁𝑘

𝑖=1 in 𝑘-th client.

3 METHODOLOGY

As shown in Fig. 2, FedACK consists of cross-lingual mapping,
backbone model, and federated adversarial contrastive KD.

3.1 Cross-Lingual Mapping

We adopt a Transformer encoder-decoder-based method to achieve
the alignment of different language contents. In essence, given a𝑚-
word text 𝑥 = {𝑥1, ..., 𝑥𝑚} in one language and the corresponding
𝑛-word text 𝑦 = {𝑦1, ..., 𝑦𝑛} in another language, we use an En-

coder 𝜙𝐸 to transform the source text 𝑥 and the target text 𝑦 into
context representations 𝑧𝑥 = {𝑧𝑥1 , ..., 𝑧𝑥𝑚 } and 𝑧𝑦 = {𝑧𝑦1 , ..., 𝑧𝑦𝑛 }.
We devise aMapperM for converting between two context rep-
resentation spaces, i.e., 𝑧𝑥 ′ =M(𝑧𝑦) and 𝑧𝑦 ′ =M(𝑧𝑥 ).

We introduce an adversarial mechanism for optimizingM so
that the original 𝑧𝑥 and the mapped 𝑧𝑥 ′ can be sufficiently similar.
We first obtain the embedding of the context representations:

𝑧𝑥 =
1
𝑚

𝑚∑︁
𝑘=1

𝑧𝑥𝑘 , 𝑧
′
𝑥 =

1
𝑛

𝑛∑︁
𝑘=1

𝑧′𝑥𝑘 . (2)

Then we use the discriminator 𝐷 to distinguish whether an embed-
ding 𝑧𝑥 or 𝑧′𝑥 is forward propagated fromM (𝑧𝑦 is equal to 𝑧′𝑦 ).
Accordingly, the loss of the discriminator is defined as:

L𝑑𝑖𝑠 = L𝑑𝑖𝑠𝑥 + L𝑑𝑖𝑠𝑦 ,

L𝑑𝑖𝑠𝑥 =(𝐷 (𝑧𝑥 ) − 𝑦𝑧𝑥 )2 + (𝐷 (𝑧′𝑥 ) − 𝑦𝑧′𝑥 )
2,

(3)

where the label 𝑦𝑧 is set as 0 if an embedding 𝑧 is mapped fromM.
We combine the encoder 𝜙𝐸 and the mapperM into the generator.
Similarly, the loss of the generator is:

L𝑔𝑒𝑛 = (𝐷 (𝑧′𝑥 ) − 𝑦𝑧′𝑥 )
2 + (𝐷 (𝑧′𝑦) − 𝑦𝑧′𝑦 )

2, (4)

where the label 𝑦𝑧 is always set as 1 to produce sufficiently similar
representations to confuse the discriminator. We collect the context
representations (𝑧𝑥 , 𝑧𝑦, 𝑧𝑥 ′, 𝑧𝑦 ′) and decode them with a Decoder
𝜙𝐷 and generate the corresponding translation (𝑧𝑦, 𝑧𝑥 , 𝑧′𝑦, 𝑧′𝑥 ), where
𝑧𝑦 = 𝜙𝐷 (𝑧𝑥 ) and other terms are calculated in a similar way.

The loss of the Transformer is therefore defined as the cross-
entropy loss between 𝑥 and 𝑦:

L𝑡𝑟𝑎𝑛𝑠 = L𝑧𝑥 + L𝑧𝑦 + L𝑧𝑥 ′ + L𝑧𝑦 ′,

L𝑧𝑥 = −
𝑛∑︁
𝑡=1

log 𝑃 (𝑦𝑡 |𝑧𝑦 < 𝑡, 𝑧𝑥 ),

L𝑧𝑥 ′ = −
𝑛∑︁
𝑡=1

log 𝑃 (𝑦𝑡 |𝑧′𝑦 < 𝑡, 𝑧𝑥
′).

(5)

3.2 Backbone Model for Feature Extraction

The main task is to let user-level backbone feature extractor model
𝜀 to extract features per user metadata (e.g., account properties) and
textual data (e.g., tweets). We concatenate the key items extracted
from the metadata into the property vector𝑢𝑝 , following the similar
way as [41, 42], which is converted into user’s property representa-
tion 𝑟𝑝 by a Multi-layer Perceptron 𝑟𝑝 = 𝑀𝐿𝑃 (𝑢𝑝 ). For textual data,
assume a user has posted M Tweets 𝑢𝑡 = {𝑡11 , . . . , 𝑡

1
𝑄1
, 𝑡21 , . . . , 𝑡

𝑀
𝑄𝑀
},

possibly in the form of different languages; 𝑡 𝑗
𝑖
represents the 𝑖-th

word in the 𝑗-th tweet. We leverage the Encoder and Mapper deliv-
ered by the aforementioned cross-lingual module to convert each𝑢𝑡
into a uniformed contextual space, i.e., 𝑧𝑢𝑡 = {𝑧1

1, . . . , 𝑧
1
𝑄1
, 𝑧2

1
′
, . . . , 𝑧𝑀

𝑄𝑀
}.

A Convolutional Neural Networks (CNN) layer, i.e., TextCNN[21],
is then used to obtain the tweet-level representation ℎ𝑢𝑡 :

ℎ𝑢𝑡 = {ℎ𝑡1, . . . , ℎ
𝑡
𝑀 }, ℎ

𝑡
𝑗 = 𝐶𝑁𝑁 ({𝑧

𝑗

1, . . . , 𝑧
𝑗

𝑄1
}). (6)

An attention layer is used to quantify the influence of each tweet
on the overall semantics of the user and to calculate the user-level
tweet representation 𝑟𝑡 through weighted aggregation of all tweets.
The complete user-level representation 𝑟𝑢 is:

𝑟𝑢 = 𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑟𝑝 , 𝑟𝑡 )). (7)

3.3 Federated Adversarial Contrastive KD

Architecturally, we follow the conventional server-client design for
the Federated GAN-based KD. A client 𝑘 contains a global generator
𝐺 for KD, and a local generator 𝐺𝑘 for data enhancement. We use
two discriminators – 𝐷1 shared across all clients with the same
architecture and initial parameters but trained on local data, and
𝐷2 exclusively designated for each client to satisfy its individual
demand. Each client uses a backbone model 𝜀 to get the user’s
representation 𝑟𝑢 = 𝜀 (𝑥𝑢 ) from local data D𝑘 . As a significant
departure from the state-of-the-arts, a new multi-stage adversarial
mechanism is proposed for jointly optimizing classification in both
discriminators at intra-client level and a contrastive mechanism for
aligning different feature spaces across clients. The notations are
detailed in Appendix A.1.
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Figure 2: The proposed FedACK framework.

3.3.1 Local Adversarial Contrastive KD. The adversarial learning
on a per client basis include the following multi-phases.
Stage-1: Training D1 and D2 as classifiers.We aim to facilitate
the two models to learn different decision boundaries for the same
class of samples and compress the feature space of the feature ex-
tractor. To tackle non-IID data distribution and data scarcity among
clients, we treat the shared global generator 𝐺 as teacher network
and distill the knowledge of global data distribution from it. For
each sample (𝑥𝑘

𝑖
, 𝑦𝑘
𝑖
),𝐺 uses a standard Gaussian noise 𝑧 ∼ N(0, 1)

and label 𝑦𝑘
𝑖
to generate pseudo-data 𝑥 = 𝐺 (𝑧,𝑦𝑘

𝑖
;𝜃𝐺 ). (𝑥𝑘𝑖 , 𝑥) is

fed into 𝐷1 to obtain the probability distributions (𝑝, 𝑝). We make
𝐷1 fit probability 𝑝 of real data 𝑥𝑘

𝑖
close to 𝑝 to distill knowledge

by minimizing Eq. (8):

L𝑘
𝑑𝑖𝑠

=
1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1

𝐷𝐾𝐿 (𝜎 (𝐷1 (𝑟𝑘𝑖 )) | |𝜎 (𝐷1 (𝑥)), (8)

where 𝜎 is the softmax function, 𝐷𝐾𝐿 is the Kullback–Leibler di-
vergence and 𝑟𝑘

𝑖
= 𝜀 (𝑥𝑘

𝑖
). Similar L𝑘

𝑑𝑖𝑠

′ is performed for 𝐷2.
We induce an adversarial loss to measure the probability differ-

ence between 𝐷1 and 𝐷2:

L𝑘
𝑎𝑑𝑣

=
1
𝑁𝑘

𝑁𝑘∑︁
𝑖=1

𝐷𝐾𝐿 (𝜎 (𝐷1 (𝑟𝑘𝑖 )) | |𝜎 (𝐷2 (𝑟𝑘𝑖 ))). (9)

In essence, maximizing Eq. (9) can produce distinct decision bound-
aries between two discriminators to compress overlapping decision
space. Intuitively, this is because 𝜀 would learn more precise feature
space if the representations could be correctly classified by both
discriminators. Similarly to Eq. (9), we calculate adversarial loss
L𝑘
𝑎𝑑𝑣𝑔

on the pseudo-data generated by the local generator𝐺𝑘 and
minimize it to intensify the above process. 𝐷1 and 𝐷2 also need
to correctly classify the pseudo-data randomly generated by 𝐺 to
deal with the issue of unbalanced and scarce data. To sum up, the
overall loss function of the discriminators is:

L𝑘𝐷 = L𝑘
𝑐𝑙𝑠
+ 𝛼 (L𝑘

𝑑𝑖𝑠
+ L𝑘

𝑑𝑖𝑠

′) + 𝛾 (L𝑘
𝑎𝑑𝑣𝑔
− L𝑘

𝑎𝑑𝑣
). (10)

Stage-2: Training 𝜀. We minimize the adversarial loss Eq. (9) to
reduce the difference between the probability outputs of two dis-
criminators for the same feature. This means that the same data

point can fall on the same side of the decision boundaries of the
two discriminators. The feature space of the feature extractor is
compressed and enforced to generate more precise features.

We use contrastive learning to navigate the optimization di-
rection of feature extractor, thereby overcoming the model drift
between local extractors and the global extractor. We expect the
newly optimized 𝜀𝑘𝑡 to produce a representation 𝑟 = 𝜀𝑘𝑡 (𝑥𝑘𝑖 ) as close
as possible to the 𝑟𝑔𝑙𝑜 = 𝜀𝑡 (𝑥𝑘𝑖 ) generated by the global extractor 𝜀
while as far away as possible from the last round result of the fea-
ture extractor 𝑟𝑝𝑟𝑒 = 𝜀𝑡−1 (𝑥𝑘𝑖 ). We define the following contrastive
loss function:

L𝑘,𝑖𝑐𝑜𝑛 = − log
exp(sim(𝑟, 𝑟𝑔𝑙𝑜 )/𝜏)

exp(sim(𝑟, 𝑟𝑔𝑙𝑜 )/𝜏) + exp(sim(𝑟, 𝑟𝑝𝑟𝑒 )/𝜏)
, (11)

where sim is the similarity measure function and 𝜏 denotes a tem-
perature parameter. This can not only reduce the local models’ drift
but also serve as a bridge with adversarial learning to make models
of different clients have a consistent feature space. The loss function
extractor is defined as follows:

L𝑘𝜀 = L𝑘
𝑐𝑙𝑠
+ 𝛾L𝑘

𝑎𝑑𝑣
+ 𝜇 1

𝑁𝑘

𝑁𝑘∑︁
𝑖=1
L𝑘,𝑖𝑐𝑜𝑛 . (12)

Stage-3: Training 𝐺𝑘 . We maximize L𝑘
𝑎𝑑𝑣𝑔

to ensure 𝐺𝑘 can gen-
erate pseudo-data that falls near the decision boundaries of two
discriminators. This enforces such boundaries closer to the coin-
cidence region, which further compresses the consistent feature
space of the 𝜀. As𝐺𝑘 only generates the same data for each class, we
add the diversity lossL𝑣𝑎𝑟 to improve the diversity of the generated
data and prevent model collapse:

L𝑣𝑎𝑟 = 𝑒
1

𝑁 ∗𝑁
∑

𝑖,𝑗∈{1,··· ,𝑁 }
(−∥�̃�𝑖−�̃� 𝑗 ∥2∗∥𝑧𝑖−𝑧 𝑗 ∥2)

, (13)

where 𝑥𝑖 = 𝐺𝑘 (𝑧𝑖 , 𝑦𝑖 ). The overall loss for generator 𝐺𝑘 can be
calculated through:

L𝑘𝑔 = L𝑘
𝑐𝑙𝑠
− L𝑘

𝑎𝑑𝑣𝑔
+ L𝑣𝑎𝑟 . (14)

3.3.2 Server Aggregation Knowledge Extraction. In each communi-
cation round, the client 𝑘 uploads the local parameters of {𝜃𝑘𝜀 , 𝜃𝑘𝐷1

}
to the server once the local training is finished, then waits for the
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updated global 𝐺 , 𝐷 and 𝜀 from the server to start a new round
of local training. Once the server receives the latest parameters
of the participating clients, it performs the model aggregation by
weighted average and gets the updated global 𝜀 and 𝐷 :

𝜃𝜀 =

𝑀∑︁
𝑘=1

∥ D𝑘 ∥
∥ D ∥ 𝜃

𝑘
𝜀 , 𝜃𝐷 =

𝑀∑︁
𝑘=1

∥ D𝑘 ∥
∥ D ∥ 𝜃

𝑘
𝐷1
, (15)

where𝑀 is the number of participating clients.
To ensure global data distribution can adapt to local distributions

that may largely drift from each other, we exploit the global discrim-
inator 𝐷 and global generator 𝐺 for global knowledge extraction,
without a need for server-side KD using proxy data. client’s 𝐷1 is
used as the teacher network and define the loss of 𝐺 as:

L𝐺 =
1
𝐾

𝐾∑︁
𝑘=1

∑︁
�̃�

𝛼
𝑘,𝑦
𝑡 [𝐷𝐾𝐿

(
𝜎 (𝐷𝑘1 (𝑥)) | |𝜎 (𝐷 (𝑥))

)
+ L�̃�

𝑐𝑙𝑠
], (16)

where 𝑥 is from empirical samples D𝐺 generated by 𝐺 using noise
𝑧 ∼ N(0, 1) and label 𝑦 ∼ 𝑝 (𝑦). 𝛼𝑘,𝑦𝑡 is the ratio of samples with
label 𝑦 stored in client 𝑘 against the same label samples in D. 𝑝 (𝑦)
is obtained by label counts from clients through communication.

3.4 Pipeline of FedACK

Alg. 1 summarizes the overall pipeline of FedACK. The cross-lingual
model 𝜙𝐸 andM for the backbone model 𝜀 are first trained on the
server (Line 2) and distributed to all clients. In each communication
round, FedACK first broadcasts the up-to-date 𝐺 , 𝜀 and 𝐷 to a
selected subset of clients 𝑆𝑡 (Line 5). Each client optimizes all the
required models 𝐷𝑘1 , 𝐷

𝑘
2 , 𝜀 and 𝐺𝑘 using local data (Lines 8-17).

When the parallel optimization completes, the server aggregates
the clients’ parameters in this round to update the global parameters
𝜃𝜀 , 𝜃𝐷 and to optimize the global generator 𝐺 (Lines 20-21).

4 EVALUATION

The experiments aim to answer the following questions:
• Q1. How does FedACK perform in classification under different
data distribution scenarios?
• Q2. How does FedACK perform in learning efficiency?
• Q3. Can FedACK learn consistent feature space across clients?
• Q4. What is the effect of the different parameter values in differ-
ent stages of FedACK?
• Q5. How does the cross-lingual module perform when combined
FedACK and other baselines?

4.1 Experimental Setup

4.1.1 Software andHardware. FedACK is implementedwith Python
3.8.10, Pytorch 1.7.1 and runs on two servers, one is equipped with
NVIDIA Tesla V100 GPU, 2.20GHz Intel Xeon Gold 5220 CPU and
512GB RAM, and the other is equipped with NVIDIA GeForce RTX
3090 GPU, 3.40GHz Intel Xeon Gold 6246 CPU and 256GB RAM.

4.1.2 Datasets. We conduct experiments on twoTwitter bot datasets
Vendor-19 [40] and TwiBot-20 [16], the largest ones in the public
domain by far. We mix the Vendor-19 with a dataset of benign
accounts Verified which is presented in [41]. The newly released
TwiBot-20 dataset exposes users’ social relationships and enables
the use of advanced graph representation-based algorithms. More
dataset statistics are outlined in Appendix A.2.

Algorithm 1: FedACK
Input: Local data D𝑘 , 𝑘 = 1, · · · , 𝐾 , corpus data D𝑐 , models𝐺𝑘 ,

𝜙𝐸 ,M, 𝜀 , 𝐷𝑘
1 , 𝐷

𝑘
2 ,𝐺 , 𝐷

Output: Local model 𝐷2, global models 𝜙𝐸 ,M, 𝜀 ,𝐺
1 initialization;
2 Server trains 𝜙𝐸 ,M via Eq.(5) based on D𝑐 , and transfers 𝜃𝜙𝐸

, 𝜃M
to clients;

3 for each communication round 𝑡 = 1, . . . ,𝑇 do

4 𝑆𝑡 ← random subset (𝐶 fraction) of the 𝐾 clients;
5 Server broadcasts {𝜃𝐺 , 𝜃𝜀 , 𝜃𝐷 } to 𝑆𝑡 ;
6 for each client 𝑘 ∈ 𝑆𝑡 in parallel do

7 Client 𝑘 updates {𝜃𝐺 , 𝜃𝑘𝜀 , 𝜃𝑘𝐷1
} ;

8 for each local epoch 𝑒 = 1, · · · , 𝐸 do

9 calculate L𝑘
𝐷

via Eq.(10) ;
10 {𝜃𝑘

𝐷1
, 𝜃𝑘

𝐷2
} ← {𝜃𝑘

𝐷1
, 𝜃𝑘

𝐷2
} − ∇L𝑘

𝐷
;

11 end

12 for each local epoch 𝑒 = 1, · · · , 𝐸 do

13 calculate L𝑘
𝜀 via Eq.(12), 𝜃𝑘𝜀 ← 𝜃𝑘𝜀 − ∇L𝑘

𝜀 ;
14 end

15 for each local epoch 𝑒 = 1, · · · , 𝐸 do

16 calculate L𝑘
𝑔 via Eq.(14), 𝜃𝑘

𝐺𝑘
← 𝜃𝑘

𝐺𝑘
− ∇L𝑘

𝑔 ;
17 end

18 Client 𝑘 sends {𝜃𝑘𝜀 , 𝜃𝑘𝐷1
} back to server;

19 end

20 Server update {𝜃𝜀 , 𝜃𝐷 } ← Eq.(15) ;
21 Server calculate L𝐺 for𝐺 via Eq.(16) ;
22 𝜃𝐺 ← 𝜃𝐺 − ∇L𝐺
23 end

4.1.3 Data heterogeneity. We use Dirichlet Distribution Dir (𝛼) to
mock the non-IID given in [23] and split the bot dataset with het-
erogeneity. 𝛼 is an indicator of Dirichlet distribution – the smaller
𝛼 is, the more heterogeneous the data distribution is.

4.1.4 Baselines. As federated KD provided a natural pathway to
privacy preservation without sharing original data – the key con-
cern in cross-platform bot detection – federated KD-based ap-
proaches baselines that can handle heterogeneity of non-IID data
are the pedestal focus of the comparison. FedAvg and [28], Fed-
Prox [25] improve the local model training and update under het-
erogeneity through adding an optimization item. FedDF [26] em-
ploys data-free knowledge distillation to improve the global model
on server side. FedEnsemble [34] uses an ensemble mechanism
for combining the output of all models to predict a specific sample.
FedDistill [34] shares label-wise average of logit vectors among
users for data-free knowledge distillation without network parame-
ter shared. FedGen [49] and FedFTG [44] offer flexible parameter
sharing and knowledge distillation.

4.1.5 Model Parameters. The cross-lingual module is trained upon
the corpus released in [48]. To be fair, the same cross-lingual mod-
ule and backbone model 𝜀 (same architecture and initial parameters)
are used upon all baseline approaches. For the transformer architec-
tures in the cross-lingual module, we use the same configuration of
[38]; the number of layers, feed-forward hidden size, model hidden
size and the number of heads are 6, 1024, 512, and 8, respectively.
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(e) TwiBot-20 (𝛼 = 0.5).
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(f) TwiBot-20 (𝛼 = 0.1).

Figure 3: Visualization of data heterogeneity. The darker color means more training samples with a label available to the

client.

Table 1: Comparison of the average maximum accuracy of different methods for social bot detection (%).

Dataset Vendor-19 TwiBot-20

Setting 𝛼 = 1 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 1 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05

FedAvg 71.30±0.60 61.06±1.52 60.88±2.85 59.81±2.48 54.04±0.50 55.41±1.35 51.37±0.77 52.46±0.02
FedProx 84.37±0.43 78.25±1.02 51.86±0.04 63.27±2.32 74.34±0.06 73.32±0.25 51.86±0.04 52.30±0.63
FedDF 86.37±1.23 80.17±2.21 63.16±1.37 67.01±1.78 72.12±1.96 71.25±1.03 55.23±1.32 53.35±1.41

FedEnsemble 81.12±2.22 76.70±1.21 64.51±2.56 68.05±1.15 55.98±2.55 54.15±0.04 54.21±0.04 54.15±0.04
FedDistill 79.68±0.58 68.77±1.13 52.88±0.06 70.25±0.39 64.11±0.29 63.34±0.56 50.00±0.00 54.30±0.05
FedGen 90.05±0.33 84.83±0.96 65.12±0.60 70.79±2.39 74.14±0.47 73.12±2.09 59.19±2.70 55.78±1.79
FedFTG 88.31±1.41 82.17±1.52 66.01±1.25 68.39±1.94 74.27±1.21 74.13±0.53 60.14 ±1.74 56.17±1.27

FedACK-A 91.31±0.52 84.79±1.05 66.10±2.90 68.21±1.95 77.16±1.09 74.70±1.64 63.52±1.09 55.39±1.24
FedACK 88.58±1.91 87.05±2.03 76.04±3.40 75.27±2.50 77.08±1.83 78.26±2.60 67.81±2.20 60.14±1.32
Gain ↑ 1.26∼20.01 ↑ 2.22∼25.99 ↑ 10.03∼24.18 ↑ 4.48∼15.46 ↑ 2.82∼23.12 ↑ 4.13∼24.11 ↑ 7.67∼16.44 ↑ 3.97∼7.84

The mapper is an MLP with three linear layers with a hidden di-
mension of 512, and the discriminator is an MLP with four linear
layers with a hidden dimension of 512. The MLP used for extract-
ing property features in the backbone model has two linear layers
with a hidden dimension of 512. TextCNN [21] used in 𝜀 has four
convolution kernels of size [2, 3, 4, 5]. The generators in FedACK
are MLP with two linear layers with a hidden dimension of 256.
The discriminators in FedACK are MLP with 3 linear layers with a
hidden dimension of 256. Common parameters for training the mod-
els include: batch size (64), learning rate (0.01), optimizer (Adam),
global communication rounds (100), and local updating steps (5).

4.1.6 Methodology and Metrics. The comparison is five-fold: 1)
effectiveness (model accuracy and capability of handling hetero-
geneity), 2) efficiency (the number of communication rounds re-
quired to achieve a target accuracy) and 3) the effect of learning
consistent feature space. 4) sensitivity (variation of model accuracy
under different hyperparameter settings) 5) cross-lingual valida-
tion (performance gains of our proposed cross-lingual modules in
cross-platform scenarios where multiple languages coexist). Since
the samples of different categories in the datasets are balanced, we
simply use accuracy and deviation as the main metrics.
4.2 Effectiveness (Q1)

Wevary the hyperparameter dataset partition𝛼 from {1, 0.5, 0.1, 0.05}
for each dataset to validate the performance of different methods

with varying degrees of data distribution heterogeneity. The dark-
ness of coloring represents the sample number of a specific class
stored on a client. As shown in Fig. 3, increased data heterogeneity
(e.g., 𝛼 = 0.1) leads to more clients store only one class of samples.
Accuracy Comparison. Table 1 compares the accuracy among
baseline algorithms. All experiments are repeated over 3 random
seeds. Overall, our method outperforms all baselines in any scenario.
FedACK achieves 1.26%∼10.03% accuracy improvement in absolute
terms when compared with the runner-up methods (i.e., FedGen,
FedFTG). While FedProx can achieve relatively competitive perfor-
mance when data heterogeneity is less intense (e.g., 𝛼 = {1, 0.5})
due to its limit to local model updates, it cannot well handle more
heterogeneous data distribution. The data-free knowledge distilla-
tion in FedGen and FedFTG can substantially improve the server’s
global model; however, they are insufficient to effectively tackle
feature space inconsistency and model drift. The performance gain
FedACK is more significant against other baselines when data het-
erogeneity increases (e.g., 𝛼 = {0.1, 0.05}), indicating its superiority
in handling data heterogeneity. Appendix A.3 further demonstrates
the improvedmodel generalization in our approach when compared
with other baselines.
Ablation Study.We generated a new variant model, FedACK-A,
that excludes the contrastive module. As shown in Table 1, the ac-
curacy of FedACK-A is outstanding when data heterogeneity is low
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(d) TwiBot-20 (𝛼 = 0.5).

Figure 4: Learning Curve of (a-b) Vendor-19 and (c-d) TwiBot-20 in 100 communication rounds in different 𝛼 settings.

Table 2: The round number to reach the target accuracy on

Vendor-19 (80%, 70%) and TwiBot-20 (70%, 65%).

Dataset Vendor-19 TwiBot-20

Setting 𝛼 = 1 (80) 𝛼 = 0.5 (70) 𝛼 = 1 (70) 𝛼 = 0.5 (65)
FedAvg unreached unreached unreached unreached
FedProx 25.3±3.1 32.6±2.3 13.3±2.8 24.0±7.3
FedDF 22.3±2.4 38.4±3.1 50.3±5.2 60.2±6.4

Ensemble 9.0±1.1 6.0±1.4 unreached unreached
FedDistill 60.0±1.0 unreached unreached unreached
FedGen 7.3±0.4 5.0±0.8 10.6±0.9 4.6±1.2
FedFTG 43.5±37.5 15.6±16.5 12.6±0.5 9.4±2.3
FedACK 4.6±3.8 2.3±0.9 2.33±1.25 1.67±0.94

but falls off when higher heterogeneity manifests. This indicates
the adversarial training and global knowledge distillation alone can
function effectively in the face of low heterogeneity. The contrastive
learning mechanism is of importance to constrain the model op-
timization direction, which demonstrate the necessity of learning
consistent feature spaces when dealing with data heterogeneity.

4.3 Efficiency (Q2)

Fig. 4 shows the learning curve of different methods within 100
communication rounds and FedACK is among the top performers.
FedDistill has the best stability, rapidly approaching a stable level
only after a dozen rounds of communication, but the achievable
accuracy is merely lower than 0.65, making it less competitive when
compared with other methods. FedACK can very quickly converge
to a high level of accuracy after the initial rounds and remains high
in the following communication rounds.

Table 2 reports the average number of rounds required for each
method to achieve the target accuracy in different settings. Un-
reached means the failure of achieving the target accuracy (80%, 70%
for Vendor-19; 70%, 65% for TwiBot-20) in all three runs with differ-
ent random seed. FedACK achieves target accuracywith aminimum
number of communication rounds under any circumstance. FedGen,
the second best performer, still requires 1.6∼4.5 times the communi-
cation rounds of our method. This is because FedACK incorporates
the proportion of the label of each pseudo sample in each client
into a part of knowledge during global knowledge extraction and
classification. This indicates the importance of each client to the
knowledge of a specific sample. FedACK also limits the feature
space and optimization direction of the models at the client side,
resulting in quicker convergence to target a given accuracy.
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Figure 5: Decision boundaries and feature space of two ran-

domly selected clients from FedACK trained on Vendor-

19. The x-axis and y-axis represent the values of the 2-

dimensional features output by 𝜀 described in Sec 4.4.

4.4 Feature Space Consistency (Q3)

We also conduct an experiment to show how FedACK learns the
feature space. Fig. 5 visualizes the learnt feature space and the deci-
sion boundaries of two classifiers in FedACK on Vendor-19 dataset.
We tweak the feature extractor 𝜀 to produce 2-dimension features
for each input sample. We randomly select two clients after training
FedACK in 100 communication rounds and plot the features of test-
ing data samples. It can be observed that adversarial learning makes
the two classifiers in any of the two clients learn distinct decision
boundaries. The different decision boundaries impose restrictions
on the feature space learned by the feature extractor. To extract
features from the same class of samples and locate them in overlap-
ping areas on the same side of the decision boundary, the feature
extractor compresses the generated features into a linear region
for simultaneous classification. Another observation on Fig. 5(a)
and Fig. 5(b) is that the feature extractors learn a consistent feature
space across clients due to the contrastive learning that limits the
update direction of the feature extractors. These findings show the
advancements of FedACK in learning feature spaces.

4.5 Sensitivity (Q4)

We investigate the hyper-parameters sensitivity based on the Vendor-
19 dataset. The hyperparameters include 𝛾 for adjusting the propor-
tion of adversarial loss, and 𝜇 and 𝜏 for adjusting the proportion of
contrastive loss. The number of repeated random seeds is set as 5.

As shown in Fig. 6(a), when the heterogeneity of data distribution
is marginal (i.e., 𝛼 = 1), the accuracy is insensitive to 𝛾 . However,
when the heterogeneity increases (i.e., 𝛼 going down), noticeable
accuracy variation manifests among different settings of 𝛾 . Similar
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(a) FedACK with different 𝛾 in adversarial learning. (b) FedACK with different 𝜇 in contrastive learning. (c) FedACK with different 𝜏 in contrastive learning.

Figure 6: Hyperparameter Sensitivity (𝛾, 𝜇, 𝜏) of FedACK (a-c) on Vendor-19 under different data heterogeneity settings (𝛼).

observations can be found in Fig. 6(c), indicating a discrepancy in
the accuracy among different 𝜏 . These findings implicate a great
need for carefully examining and fine-tuning such parameters in
the adversarial and contrastive loss on a case-by-case basis, con-
sidering the data characteristics (particularly the heterogeneity of
data distribution), to target the optimal model performance. Fig 6(b)
depicts the accuracy under different combinations of 𝜇 and 𝛼 . Ob-
servably, for a given data distribution, the model accuracy reaches
its peak when 𝜇 increases to 0.5, before falling off if 𝜇 continues to
increase. This is largely due to a balance between adversarial loss
and contrastive loss. The dominance of either side will lead to a
degradation of the model’s effectiveness.

4.6 Cross-Lingual Validation (Q5)

As there is no publicly available datasets in the field of social bot
detection designated for cross-lingual performance at the time of
writing, we synthesize an experimental cross-lingual dataset by
randomly selecting half the social accounts from Vendor-19 dataset
and translating their tweets into Chinese using Google Translate.
We use the same experiment settings described in Section 4.1. We
pre-train the cross-lingual mapper by using the cross-lingual sum-
marization corpus NCLS [48] and then combine the pre-trained
encoder 𝜙𝐸 and mapperM with FedACK and other baselines. By
default, each method is evaluated with the cross-lingual mapperM
enabled. Each method with the suffix -NC means the model only
uses 𝜙𝐸 to extract features from text content withoutM.

Experimental results are shown in Table 3. The observations
are three-fold: i) FedACK constantly outperforms others in all cir-
cumstances. The accuracy can increase 3.28∼6.45 in absolute value,
when data heterogeneity is low (𝛼 = 1). ii) Compared with the
model variant withoutM (e.g. FedACK-NC), the accuracy of the
model (e.g. FedACK) equipped with the cross-lingual mapper is
unsurprisingly improved. This once again demonstrates the sub-
stantial capability and necessity of coping with cross-lingual issues.
It is worth noting that there is also a diminishing performance gain
from cross-language mapping as the 𝛼 value gets smaller. This is
because the heterogeneity of data distribution becomes the domi-
nating challenge to accuracy, and the cross-lingual module itself is
insufficient and thus brings limited benefit. iii) Equipped with the
cross-lingual mapper, each method can well tackle the multi-lingual
scenarios. There is marginal disparity between the model accuracy
in the case of a singular language environment (shown in Table 1)

Table 3: Comparison of the average maximum accuracy (%)

of different methods with/without(-NC) cross-lingual map-

ping. Gain is the disparity between FedACK and other base-

lines.

Dataset Vendor-19

Setting 𝛼 = 1 𝛼 = 0.5 𝛼 = 0.1 𝛼 = 0.05

FedDistill-NC 78.14±1.30 67.01±0.16 66.35±0.25 69.24±0.30
FedDistill 80.03±0.59 68.87±0.30 67.20±0.22 70.18±0.45
FedGen-NC 81.94±0.82 77.88±0.52 70.65±2.73 72.73±2.20
FedGen 83.20±1.07 79.63±0.57 72.42±2.18 73.26±0.53

FedFTG-NC 78.18±1.04 76.79±1.22 67.61±1.57 72.30±1.20
FedFTG 82.85±1.52 77.29±3.42 69.65±0.95 73.15±1.27

FedACK-NC 84.54±1.30 79.37±1.24 73.99±2.55 74.48± 1.50

FedACK 86.48±0.99 81.16±1.06 75.05±2.78 74.18±1.67
Gain ↑ 3.28∼6.45 ↑ 1.53∼12.29 ↑ 2.63∼7.85 ↑ 0.92∼4.0

and the accuracy when multiple languages co-exist in the tweet
features (as shown in Table 3). This demonstrates the robustness
and effectiveness of the proposed mapper for cross-lingual con-
tents. Among all the comparative baselines, our method has the
least degradation caused by the existence of multiple languages,
owing to the unified feature space mapping for different languages.

5 CONCLUSION

Social bots have been growing in the social media platforms for
years. State-of-the-art bot detection methods fail to incorporate in-
dividual platforms with different models and data characteristics. In
this paper, we devise a GAN-based federated knowledge distillation
mechanism for efficiently transferring knowledge of data distribu-
tion among clients. We elaborate a contrast and adversarial learning
method to ensure consistent feature space for better knowledge
transfer and representation when tackling non-IID data and data
scarcity among clients. Experiments show that FedACK outper-
forms baseline methods in terms of accuracy, learning efficiency,
and feature space consistency. In the future, we will theoretically
investigate the feature space consistency and extend FedACK to fit
graph-based datasets with diversified entities and relations.
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A APPENDIX

A.1 Glossary of Notations

In Table 4, we summarize the main notations used in this work.

A.2 Statistics of Datasets

Table 5 summarizes the basic statistic information of datasets used
in this work.

A.3 Generalization Experiment

To validate the generalization of our method, we collected four
additional public social bot detection datasets: Varol-17, Gilani-
17, cresci-19, botometer-feedback-19. To simulate the scenario of
bot detection in uniting multiple social platforms, we select one
dataset from Vendor-19 and TwiBot-20 as the test dataset. Each
of the remaining datasets is distributed to a specific client. In this
circumstance, there are five clients and a server, and each client
represents a social platform. We aim to demonstrate the enhanced
model proposed in this work can still competitively detect new
variants that have never been seen before, when all platforms share
the characteristics of their own social bots with other platforms.
As shown in Table 6, the difficulty detection in the two datasets
is entirely different. For most of the approaches, the classification
accuracy of TwiBot-20 dataset is merely 50%, which indicates a
huge discrepancy of bot features among datasets. In other words,
the detection models learnt from the early generations of bots can

Table 4: Notations.

Symbol Definition

L Defined loss function
𝐾 ; 𝑁𝑘 Number of clients; Number of samples in 𝑘-th client
𝑥𝑚 ; 𝑦𝑛 The𝑚-th word and 𝑛-th word in two different language contents

𝜙𝐸 The encoder for text content representation
𝜙𝐷 The decoder for translating context representation
M The cross-lingual mapper for converting context representation
𝑧𝑥 Text context representation vector
𝜖 The backbone model for user feature extraction
𝑢𝑡 The tweets set from 𝑡-th user
𝑡𝑚
𝑖

The 𝑖-th word in user’s𝑚-th tweet
ℎ𝑡𝑚 Representation for𝑚-th tweet posted by 𝑡-th user

𝑟𝑝 ; 𝑟𝑡 User’s property representation; tweet-level representation
𝑟𝑢 ,𝑟 User-level representation

𝐺 ; 𝐷1, 𝐷2 Generator; Discriminators
D𝑘 The local data stored in the 𝑘-th client
D The data set collected from all clients

(𝑥𝑘
𝑖
, 𝑦𝑘
𝑖
) The 𝑖-th sample pair stored in the 𝑘-th client

N(0, 1) The gaussian distribution
𝑥 The pseudo-data generated by generators

𝑝; 𝑝 Probability of local data; Global data distribution probability
𝐷𝐾𝐿 The Kullback–Leibler divergence

𝜏 The temperature parameter for smoothing similarity value
𝛾, 𝜇 The weight hyperparameter in the defined loss function
𝜃 The parameters of the designed model
𝑀 The number of clients participating in the communication

𝛼
𝑘,𝑦
𝑡 Ratio of samples with label 𝑦 stored in 𝑐𝑙𝑖𝑒𝑛𝑡𝑘 against in D

Table 5: Statistics of datasets.

Dataset Humans Bots Total number

Vendor-19 [40] 1860 568 2428
TwiBot-20 [16] 4175 5286 9461

Table 6: Comparison of the average maximum accuracy of

different methods which are tested on a specific dataset

(Vendor-19 or TwiBot-20) and trained from the other

datasets.

Test Dataset Vendor-19 TwiBot-20

FedAvg 76.53±0.11 49.63±1.09
FedProx 74.26±3.57 54.21±2.01
Ensemble 76.01±0.65 51.98±5.50
FedDistill 73.11±0.95 51.19±1.12
FedGen 77.52±0.65 62.30±0.93
FedFTG 76.51±1.15 60.12±1.01
FedACK 78.13±1.38 64.79±1.61

hardly detect the bots in TwiBot-20 in an accurate manner. By
contrast, our approach can achieve a higher accuracy due to the
ability to learn a consistent feature space; as a result, the bot account
features in different clients can be effectively shared. Additionally,
constraining the optimization direction of the client model can
facilitate our model to obtain better representation ability, and
hence a better generalization than others.
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